2020/10/23 - [Study/인공지능] - Optimizer : Momentum, NAG ( 인공지능 기초 #14 ) learning rate가 변수마다 스텝마다 바뀝니다. 처음 시작점부터 최소점까지는 멀기 때문에 성큼성큼가다가 (보폭을 크게) 시간이 지나면 점점 목적지에 다가가게 되니까 보폭을 작게 조정합니다. 큰 변화를 겪은 변수의 러닝레이트는 크게 작아지고, 작은 변화를 겪은 변수의 러닝레이트는 작게 작아집니다. ( 이유는 x 와 y가 있을때 x축으로 더 크게 이동했다면, y축은 아직 먼 가능성이 높고 x축은 목표에 가까워 졌을 가능성이 높아졌다고 보기 때문입니다. ) Hadamard product 라는 기호입니다. 연산은 아래와 같습니다 ( 각 행렬의 위치를 덧셈처럼 위치마다 곱한값이 결과..
2020/10/19 - [Study/인공지능] - Affine층 역전파 ( 인공지능 기초 #12 ) 심층신경망에서 층을 깊게 쌓으면 몇가지 심각한 문제가 발생하는데, 그러한 문제를 어떻게 해결할지 해결하지 못한다면 어떻게 억제할 지 공부해봅니다. Optimizer : 어떻게 하면 산을 잘 타고 내려갈까? [경사하강법] 손실함수는 낮으면 낮을수록 좋습니다. (손실함수 = 크로스 엔트로피) 크로스 엔트로피의 변수는 가중치와 편향 입니다. MNIST 기준 39760 개입니다. 39760개의 연립방정식을 푸는것은 말이 안되기 때문에, 경사하강법을 이용해 최소가 되는 지점을 찾아갑니다. 2020/10/19 - [Study/인공지능] - 경사하강법 (인공지능 기초 #9) 경사하강법 (인공지능 기초 #9) 손실함수는..