Overfitting [과적합] ( 인공지능 기초 #20 )
Overfitting : 학습데이터에 너무 최적화되어 weight 값이 잡히고, 이후 학습 데이터가 아닌 새로운 데이터에는 올바른 값을 내보내지 못하는 형상. 매개변수에 비해 상대적으로 훈련 데이터 수가 적을 때 일어난다. Regularization : 데이터에 너무 과적합되어 모델이 피팅되었으니, 이를 좀 덜 적합하게 하고, 이후 새로운 데이터에도 일반적으로 들어맞는 모델을 만들어야 한다. 이 때, 과적합이 아닌 일반성을 띄게 해주는 기법 파라미터 : 훈련 데이터의 정보를 담는 슬롯 정보의 슬롯이 많아서 필요없는 특수한 정보 (MNIST에서의 예는 어떤 사람의 특유의 필체 같은 것 , 사실은 숫자의 모양만 알면 됨) 같은것이 너무 많이 들어가 일반적인 데이터는 판단을 못하게 되는 것입니다. 사실 파라미..
Study/인공지능
2020. 10. 26. 19:04