2020/09/16 - [Study/인공지능] - 3층 인공신경망 ( 퍼셉트론과 활성화 함수의 결합 ) ( 인공지능 기초 #5-1) 2020/09/15 - [Study/인공지능] - Heaviside 함수 Sigmoid함수 ReLU 함수, 신경망과 활성화 함수 ( 인공지능 기초 #4 ) 확률 벡터는 단순하게 확률을 벡터로 표현한 것이다. 중요한점은 1. 확률은 음수가 없다는 점. 2. 모든 확률을 더하면 1이 나온다는 점 이다. 일반적인 벡터는 음수일 수도 있고, 다 더했을때 1이 되지 않을수도 있다. 이러한 벡터를 양수이며 다 더하면 1이 되도록 바꾸어 주는 것이 Softmax 변환 이다. ( 확률벡터로 변환시켜주기 ) 방법으로는 (a1,a2,a3 ,...,an) 이 있을 때 1. 양수로 만들기 e^x..
퍼셉트론은 신경망(딥러닝)의 기원이 되는 알고리즘 입니다. 퍼셉트론의 구조를 배우면 신경망과 딥러닝의 기초를 닦을 수 있습니다. 인공신경망(artificial neural network 아티피셜 뉴럴 네트워크) = 수학적으로 뉴런 네트워크를 모방해서 만든 것 아티피셜 뉴럴 네트워크가 뉴런 네트워크의 무엇을 모방해서 만들었는지 알아보자. 우선 우리의 몸은 무언가를 만졌을 때 전기신호가 뉴런 네트워크를 타고, 중추신경계, 뇌 등 까지 전기신호가 전달이 됨. 빨간색 파랑색 구분도 전기신호가 뉴런 네트워크를 타고 뇌까지 전달되는 것 Dendrite : 이웃 뉴런에서 전기신호를 받는다. Synapse : 전기신호의 세기를 재 조정하는 역할을 한다. Soma ( cell body ) : 여러 전기신호를 합친다. A..